State of World of Fuel Economy Policy and Technology Trends

Drew Kodjak, Zifei Yang

GFEI Global Networking Meeting UNESCO Annex, 1 rue Miollis 9 – 10 June, 2016 Paris France

Key messages

- 1. To date, 10 regions / countries have adopted fuel economy standards, not including feebates.
- 2. As a result, the pace to technology innovation and deployment has accelerated.
- Fuel economy standards are one of the most cost effective and politically attractive climate mitigation measures (e.g., consumer payback is less than 4 – 5 years).
- 4. Real world emissions are an issue that needs to be addressed (covered later today).
- 5. Nations interested in adopting policies to improve passenger vehicle, and heavy-duty, fuel efficiency have a wealth of successful policy experience to draw upon.

Historical fleet CO_2 emissions performance and current standards (g CO_2 /km normalized to NEDC) for passenger cars

* Note that Japan has already exceeded its 2020 statutory target, as of 2013.

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Overall CO₂ reduction required by passenger car standards

Cost-effectiveness analyses of light- and heavy-duty fuel economy and CO₂ standards

Rule	Per-Vehicle Cost	Payback Period
US LDV 2017-20251	\$1,800	3.5 years
US LDV 2012-2016 ²	\$950	3 years
US HDV Phase 1 2014 - 2017 ³	\$378-\$6,215	1–2 years
California Advanced Clean Cars Program 2017 - 2025⁴	\$1,340-\$1,840	3 years
Canada LDV 2017-20255	\$2,095	2 to 5 years
Canada LDV 2011-20166	\$1,195	1.5 years
European 95g CO ₂ /km Standard 2020 ⁷	€1,300	4-5 years
India LDV 2020 ⁸	\$400 to \$600	2-3 years

Effects of off-cycle credits and efficient vehicle credits on CO₂ targets

Off-cycle credit examples

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

- Properly designed, off-cycle credits reduce manufacturers' compliance cost and spur technology innovation
- Improperly designed, they weaken the standards

	Target	Technology	Max. credit (% of target)	Note		
Brazil		Start-stop	0.0227 MJ/km			
		Active grill shutter	0.0049 MJ/km			
	1.82 MJ/km	Gear shift indicator	0.0134 MJ/km	Additional technologies		
	(2017)	Tire pressure monitoring system	0.0134 MJ/km	upon OEM's application		
		(Total)	0.0544 MJ/km (3.0%)	-		
EU				High-efficiency A/C, gear shift indicator, tire pressure management system, low rolling resistance tire and bio fuels up to 10 g/km is already included in the target		
	95 g/km (2021)	Technology not be covered by the NEDC	7 g/km (7.4%)			
US Canada		High-efficiency A/C	5 g/mi	Tire program monitoring		
		Low GWP/leakage refrigerant	13.8 g/mi	system is mandatory for		
	143 g/mi (2025)	Start-stop Thermal management Solar/thermal control More technologies	10 g/mi	 system is mandatory for safety; additional technologies upon OEM's application. Credits are different for cars and light 		
		(Total)	28.8 g/mi (20.1%)	trucks		

How are we doing against GFEI target to double fuel economy for new passenger vehicles by 2030?

Estimated using ICCT's <u>Global Transportation Roadmap model</u> (Facanha, et al., 2012). **Business as usual** = vehicle efficiency remains at 2005 levels. **Adopted** = currently adopted policies. **GFEI Target** = countries adopt standards that reduce average fuel consumption of new vehicles to 50% below 2005 levels by 2030 (GFEI, 2014).

Comparison of the latest adopted regulations for efficiency in selected regions

Region	New light-duty vehicles				New heavy-duty vehicles					
	Percent of global LDV sales, 2014		Baseline Model Year	Implementation Period	Reduction in average CO ₂ rate (grams/vehicle-km)		Percent of global HDV sales, 2014	Baseline Model Year	Implementation Period	Reduction in average CO ₂ rate (grams/vehicle-km)
China	27%		2010	2016-2020	35%		31%	2012	2014-2015	11%
EU + EFTA	20%		2010	2020-2021	32%					
US	17%		2010	2017-2025	49%		11%	2011	2014-2018	14%
Japan	6%		2010	2020	16%		5%	2006	2015	12%
Brazil	4%	1	2012	2013-2017	13%					
India	3%	1	2010	2018-2022	18%					
Canada	2%	1	2010	2017-2025	47%		1%	2011	2014-2018	14%
South Korea	2%	<u> </u>	2010	2020	39%					
Mexico	1%	1	2010	2014-2016	18%					
Saudi Arabia	1%	!	2012	2016-2020	19%					

Conclusions

- Fuel economy standards are one of the most cost effective and politically attractive carbon mitigation measures.
- Policy options include performance standards such as fuel economy standards – or fiscal measures such as feebates (which are easier to development and implement).
- Nations may want to consider regional collaborations to develop and implement policy actions across a wider market.

