

GFEI GLOBAL NETWORKING MEETING 2016

Setting of the FE baseline

9-10 JUNE 2016 - PARIS

Alex Körner alex_koerner@gmx.de

Content

- Introduction
- FE policies and data requirements firstly registered cars vs. running vehicle fleet
- Development of the FE baseline
 - Vehicle coverage PCs, CVs, two-wheelers
 - Data collection barriers and how to overcome them
 - Baseline calculation method

GFEI target – Maximising the benefits of improved fuel economy

Reduce new passenger light-duty vehicle fuel consumption (Lge/100km) by 50% until 2030 globally

Reduce passenger light-duty vehicle stock
fuel consumption (Lge/100km) by 50% until
2050 globally

Technical steps to introduce FE policies

- FE Baseline What is the average fuel economy of new passenger vehicles registered for the first time?
- Target Where will fuel economy need to be in the future?
- Identification of policies Which measures are appropriate to reach the target?
- Impact assessment of policy measures Regulatory, monetary and soft measures

To set fuel economy targets, the past needs to be understood

[3] Gasoline in Brazil contains 22% of ethanol (E22), all data in the chart have been converted to gasoline (E00) equivalent [4] Supporting data can be found at: http://www.theicct.org/info-tools/global-passenger-vehicle-standards.

What is a fuel economy baseline

- The fuel economy baseline is the weighted average fuel economy of all vehicles registered for the first time in a given year in a country
- The weighted average fuel economy is calculated using model specific fuel economy values and the number of registered vehicles as weight

Fuel economy baseline: firstly registered vs. running vehicle fleet

Firstly registered cars vs. running vehicle fleet

Firstly registered vehicles:

- + FE policy instruments such as standards, feebates, registration taxes or import taxes only <u>target</u> <u>vehicles which are registered for the first time</u>
- + First registrations are relatively easy to control
- + Policies only affecting firstly registered vehicles are easier to communicate
- Delayed impact on fuel use and emissions since new cars need to penetrate into stock

Firstly registered cars vs. running vehicle fleet

Running vehicle fleet

- + Ambitious policies show immediate results
- Baseline setting for vehicle stock in use more complex
 - Much more older cars difficult to find missing data
- Vehicle stock only targeted by fuel tax and vehicle circulation tax
- Affects all vehicle owners immediately can be more complex to find socially balanced solutions

Fuel economy baseline development

Vehicle coverage – passenger cars, heavy duty vehicles, 2/3 wheelers?

- Passenger car FE data is relatively easy to get FE standards are widely spread, UN regulation for FE/emission measurement are in place, testing procedures have a long history
- HDVs large variety of HDV models and mission profiles greatly affect HDV FE
 - Different approaches: US engine testing and limited simulation; China – extensive lab testing; EU – extensive simulation with complex modelling
- 2/3 wheelers restricted data: China is the only country having mandatory FE standards for two wheelers in place (implemented 2009)

Development of fuel economy baseline

Possible barriers

- Availability: What data is available national car registration? What institutional framework is needed to continuously collect and develop data?
- Accessibility: Who is in charge of the data? Can the data be shared?
- Vehicle market structure: Is the share of used imported vehicles significant?
- Data gaps: How to get FE data? How to convert FE data based on different test cycles?

Fuel economy baseline methodology

FE baseline setting: How to get from the vehicle registration database to average new vehicle FE?

										Final FE
		Vehicle		Engine	Engine		Transmissi	Emission	Vehicles	data,
Country	Year	Туре	Model	ccm	kW	Fuel type	on type	standard	registered	lge/100km
ххх	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EURO5	614	4.1
ххх	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EURO5	512	3.7
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	1474	3.9
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	1448	4.1
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	1140	4.3
ххх	2013	Pass.	Suzuki Grand Vitara	1870	95	Diesel	Manual	EURO5	217	7.5
ххх	2013	Pass.	Jaguar XF	2179	147	Diesel	Automatic	EURO5	20	5.8
ххх	2013	Pass.	Audi A7	2967	180	Diesel	Automatic	EURO5	37	6.5
ххх	2013	Pass.	Audi A7	2967	180	Diesel	Automatic	EURO6	29	6.4
ххх	2013	Pass.	BMW 535	2993	230	Diesel	Automatic	EURO6	2	6.0
ххх	2013	Pass.	BMW 535	2993	230	Diesel	Automatic	EURO5	1	6.2
ххх	2013	Pass.	Jeep Grand Cherokee	2987	184	Diesel	Automatic	EURO5	97	8.1
ххх	2013	Pass.	BMW X6	2993	180	Diesel	Automatic	EURO5	61	8.0
xxx	2013	Pass.	Citroen C5	1560	84	Diesel	Manual	EURO5	286	5.2
ххх	2013	Pass.	Citroen C5	1560	84	Diesel	Automatic	EURO5	247	4.8

Sales weighted average FE

	SUM ▼ (* 🛪 🖌 ƒ = SUMPRODUCT(J2:J16,K2:K16)/SUM(J2:J16)											
	Α	В	С	D SU	IMPRODUC	T(array1 , [array2], [aı	rray3], [array	4],)		J	К
												Final FE
	Countr		Vehicle		Engine	Engine		Transmissi	Emissi	on	Vehicles	data,
1	У	Year	Туре	Model	ccm	kW	Fuel type	on type	standa	ard	registered	lge/100km
2	XXX	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EURO5	5	614	4.1
3	XXX	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EUROS	5	512	3.7
4	XXX	2013	Pass	Renault Clio	1461	55	Diesel	Manual	FURO	<u> </u>	1474	3.9
5	XXX	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EUROS	5	1448	4.1
6	XXX	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EUROS	5	1140	4.3
7	XXX	2013	Pass.	Suzuki Grand Vitara	n 1870	95	Diesel	Manual	EUROS	5	217	7.5
8	XXX	2013	Pass.	Jaguar XF	37	11.645	Diese	atc natic	EUROS	5	20	5.8
9	XXX	2013	Pass.	AufiA	2967	180	Diesel	Automatic	EUROS	5	37	6.5
10	XXX	2013	Pass.		2967	180	Diesel	Automatic	EURO	5	29	6.4
11	XXX	2013	Pass.	BMW 535	2093	L C276	DOC.	Automatic	EURO	5	2	6.0
12	XXX	2013	Pass.	BMW 535	2.993	$\mathbf{J}_{2}\mathbf{M}$	Geod	Automatic	EURO5	5	1	6.2
13	XXX	2013	Pass.	Jeep Grand Cherokee	2987	184	Diesel	Automatic	EUROS	5	97	8.1
14	XXX	2013	Pass.	BMW X6	2993	180	Diesel	Automatic	EUROS	5	61	8.0
15	XXX	2013	Pass.	Citroen C5	1560	84	Diesel	Manual	EURO5	5	286	5.2
16	XXX	2013	Pass.	Citroen C5	1560	84	Diesel	Automatic	EURO	5	247	4.8
17												
18	Total av	erage									6185	4.4
19												
20	<4										1986	3.8
21	4 to 5										3449	4.2
22	5 to 6										306	5.2
23	6 to 7										69	6.4
24	>7										375	7.7
												10

Baseline – minimum data requirement

Number of sales in at least one past year by:

- Vehicle make and model (e.g. Toyota Corolla)
- Year of first registration
- Model production year (important for used imports)
- Engine displacement (liters or cubic centimeters)
- Engine power (kW or HP)
- Fuel type (e.g. gasoline, diesel, LPG, CNG, electricity)
- Rated fuel economy (Lge/100km, alternatively CO₂ emission, gCO₂/km) and test cycle basis (NEDC, FTP, JC08)

Baseline data – "nice to have"

Number of sales in at least one past year by:

- Transmission type (automatic, number of gears)
- Vehicle footprint (wheelbase x track width)
- Vehicle weight (mass in running order)
- Axle configuration (4x2, 4x4)
- Vehicle price

Baseline setting challenges

Level of detail available

- Accuracy depends on level of detail of registration database – ideally: Manufacturer, model, engine displacement, engine power, fuel, transmission
- Used imports vs. new sales
- Availability of alternative sources to fill gaps, example: FE data by model
 - FE data EEA, EPA, Chinese government website...

Filling the fuel economy data

										FINALLE
	\checkmark	Vehicle		Engine	Engine	\checkmark	Transmissi	Emission	Vehicles	data,
Country	Year	Туре	Model	ccm	kW	Fuel type	on type	standard	registered	lge/100km
ххх	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EURO5	614	4.1
ххх	2013	Pass.	VW Polo	1199	55	Diesel	Manual	EURO5	512	3.7
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	147 <mark>4</mark>	3.9
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	144 <mark>8</mark>	4.1
ххх	2013	Pass.	Renault Clio	1461	55	Diesel	Manual	EURO5	1140	4.3
ххх	2013	Pass.	Suzuki Grand Vitara	1870	95	Diesel	Manual	EURO5	217	7.5
ххх	2013	Pass.	Jaguar XF	2179	147	Diesel	Automatic	EURO5	20	5.8
ххх	2013	Pass.	Audi A7	2967	180	Diesel	Automatic	EURO5	37	6.5
ххх	2013	Pass.	Audi A7	2967	180	Diesel	Automatic	EURO6	29	6.4
ххх	2013	Pass.	BMW 535	2993	230	Diesel	Automatic	EURO6	2	6.0
ххх	2013	Pass.	BMW 535	2993	230	Diesel	Automatic	EURO5	1	6.2
ххх	2013	Pass.	Jeep Grand Cherokee	2987	184	Diesel	Automatic	EURO5	97	8.1
ххх	2013	Pass.	BMW X6	2993	180	Diesel	Automatic	EURO5	61	8.0
ххх	2013	Pass.	Citroen C5	1560	84	Diesel	Manual	EURO5	286	5.2
ххх	2013	Pass.	Citroen C5	1560	84	Diesel	Automatic	EURO5	247	4.8

Targeted FE coverage: 85% of the newly registered cars

- Identification of the best selling 20 to 50 models (based on above criteria)
- Match with FE data sources

Available FE data by model

Country	Source							
Australia	Green Vehicle Guide Factsheets							
Australia	http://www.greenvehicleguide.gov.au							
Drazil	Programa Brasiliero de Etiquetagem							
BrdZli	http://pbeveicular.petrobras.com.br/TabelaConsumo.aspx							
Chilo	Comparador de Autos							
Chile	http://www.consumovehicular.cl/?q=comparador							
China	轻型汽车燃料消耗量通告 通告日期							
China	http://chinaafc.miit.gov.cn/n2257/n2280/index.html							
European Union	Monitoring of CO2 emissions from passenger cars – Regulation 443/2009							
(EEA)	http://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-8#tab-european-data							
Franco	Consommation conventionnelles de carburant et émissions de gaz carbonique							
France	http://www2.ademe.fr/servlet/getDoc?cid=96&m=3&id=52820&p1=00&p2=12&ref=17597							
lanan	自動車燃費一覧							
Jahan	http://www.mlit.go.jp/jidosha/jidosha_fr10_000019.html							
Movico	Indicadores de Eficiencia Energética y Emisiones Vehiculares							
IVIEXICO	http://www.ecovehiculos.gob.mx/							
Singapore	One Motoring Fuel Cost Calculator							
Singapore	https://vrl.lta.gov.sg/lta/vrl/action/pubfunc?ID=FuelCostCalculator							
South Korea	소비자 체감에 부합하는 새로운 연비표시 방법 확정							
	http://bpms.kemco.or.kr/transport_2012/main/main.aspx							
South Africa	COMPARATIVE PASSENGER CAR FUEL ECONOMY AND CO2 EMISSIONS DATA							
South Africa	http://www.naamsa.co.za/ecelabels/							
Switzorland	Automobil Revue catalogue							
Switzenanu	http://katalog.automobilrevue.ch/							
	Car Fuel Data Booklet							
	http://carfueldata.direct.gov.uk/							
UK	To download the data							
	http://carfueldata.dft.gov.uk/downloads/							
	DoE / EPA Fuel Economy ratings							
	http://www.fueleconomy.gov/							
03	To download the data							
	http://www.fueleconomy.gov/feg/download.shtml							

Source:

Draft guideline for fuel economy baselinesetting

Normalization of FE data – Test cycle conversion

			- ·			.1.			
		CAFE	CAFE	=	0.8658	*	NEDC	+	14.076
		CAFE to							
		NEDC	NEDC	=	1.1325	*	CAFE	-	13.739
Gasoline	Unit: gCO2	JC08 to CAFE	CAFE	=	0.7212	*	JC08	+	36.736
Gusonne	per km	CAFE to JC08	JC08	=	1.2749	*	CAFE	-	38.423
		JC08 to							
		NEDC	NEDC	=	0.8457	*	JC08	+	24.840
		NEDC to							
		JC08	JC08	=	1.1430	*	NEDC	-	24.907
		NEDC to							
		CAFF	CAFF	=	0.7683	*	NFDC	+	23.928
		CAFE to							
		NEDC	NEDC	=	1.2209	*	CAFE	-	21.218
Diesel	Unit: gCO2	JC08 to CAFE	CAFE	=	0.6050	*	JC08	+	44.338
Diesei	per km	CAFE to JC08	JC08	=	1.3691	*	CAFE	-	38.393
		JC08 to							
		NEDC	NEDC	=	0.8230	*	JC08	+	21.950
		NEDC to							
		JC08	JC08	=	1.1720	*	NEDC	-	21.122

- Three drive cycles are currently used to measure PLDV fuel economy:
 - Europe NEDC
 - United States CAFE
 - Japan JC08

 Identical cars show different fuel economy values under different test cycles (up to 20% difference), hence results need to be normalized 22

FE data – fuel conversion

L/100km to Lge/100km	Diesel	FE*1.08
Detrefit e divetre ent	CNG	FE*1.12
Retrofit adjustment	LPG	FE*1.15

- The first conversion factor accounts for the different energy densities of gasoline and diesel to convert L/100km to LGE/100km
- The retrofit adjustment accounts for the efficiency losses of cars when retrofitted to LPG or CNG.

Thanks