## **UCDAVIS**

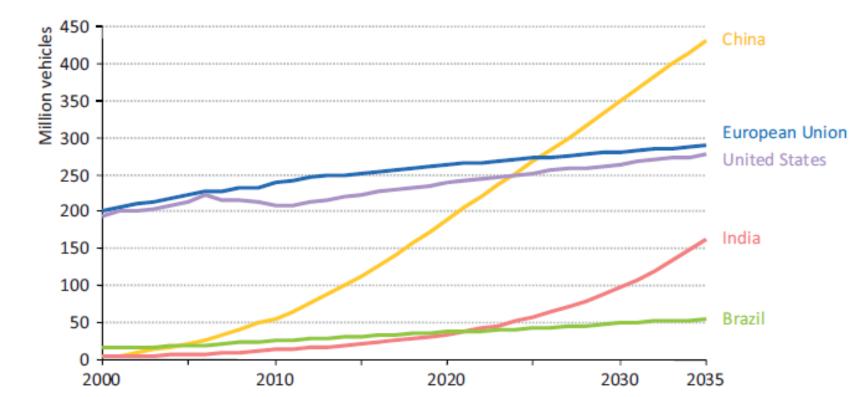
#### SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

#### **Fuel Economy – Key Concepts**

Paris, 9 June 2016

Dr. Lewis Fulton, STEPS3 Program, Institute of Transportation Studies University of California, Davis




www.steps.ucdavis.edu

#### IEA WEO 2012: heading toward 2 billion cars

OECD is fairly saturated, but rest of the world is not.:

Figure 3.6 ▷ PLDV fleet in selected regions in the New Policies Scenario







# Typical national objectives related to transportation/fuels policies

- Improve mobility
- Reduce oil dependence (diversify fuels)
- Improve balance of payments
- Reduce pollutant emissions/improve air quality
- Reduce greenhouse gases
- Promote domestic economies/jobs
- Improve safety





## **Types of Air Pollutants**

# Air pollutants affecting human health

- NOx
- Non-methane hydrocarbons
- particulates
- carbon monoxide
- Toxic emissions (e.g. benzene)
- Heavy metals

- Methane
- Black carbon
- N<sub>2</sub>0

# Air pollutants affecting the climate

CO<sub>2</sub>

Fuel quality / tailpipe controls

Fuel economy improvement

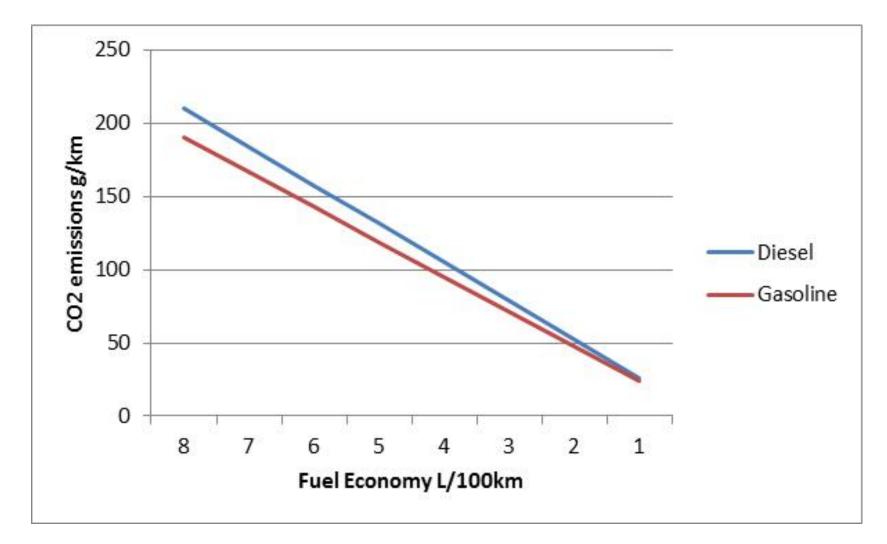




### What is fuel economy?

- Vehicles use energy, and fuel economy measures energy per unit of vehicle travel. It is the RATE of energy use.
  - Litres per 100km (Europe)
  - Km per litre (Japan)
  - Miles per gallon (United States)
- Fuel economy, fuel efficiency, fuel intensity are all fairly interchangeable terms. But fuel economy always refers to fuel use relative to distance travelled.




### What is fuel economy? (2)

- Important relationship: there is about 2.4 kg of CO<sub>2</sub> emitted per litre of gasoline burned, 2.6 for diesel.
  - The only way to cut CO<sub>2</sub> emissions is to burn less fuel (you can't capture it at the tailpipe).
  - For gasoline vehicles, 8 L/100 km = 189 g/km CO2 emissions, 7 L/100 km = 165 L/100km, etc. It's a fixed relationship.
- If you improve vehicle fuel economy, you:
  - Save fuel
  - Reduce costs
  - Cut CO<sub>2</sub> emissions
  - Don't directly help air quality very much (though this is a complex and important topic)





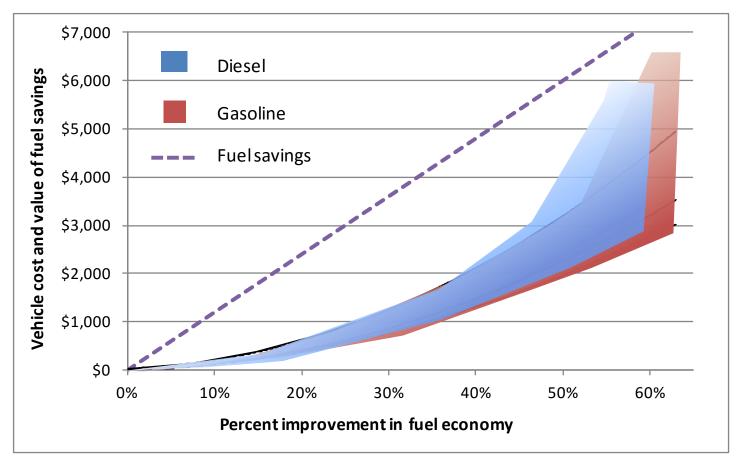
# Gasoline and Diesel fuel CO<sub>2</sub> emissions v. fuel economy







### Fuel economy context


- Fuel economy improvement can be achieved through
  - Technical changes to vehicles
  - Changing the types of vehicles bought
  - Improving vehicle maintenance
  - Changing the way vehicles are driven (ecodriving)
  - Reducing traffic congestion
- Fuel economy improvement to vehicles should be part of a broader strategy:
  - Traffic management
  - City and regional planning
  - Promotion of public transit
  - Etc.

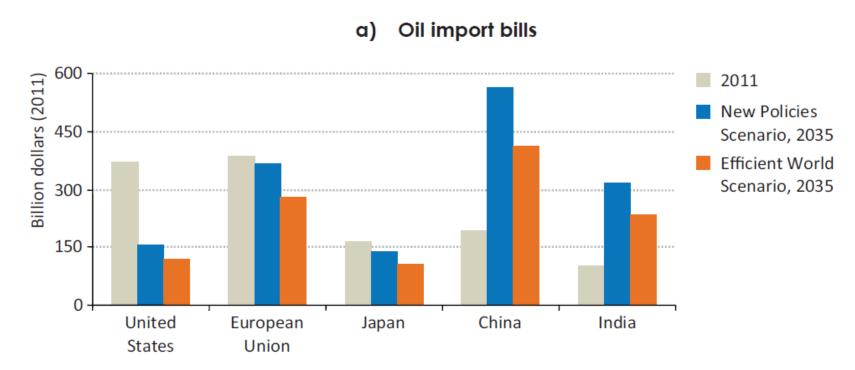




#### Fuel Economy Improvements are Costeffective

Fuel savings more than pays for fuel economy improvements in light-duty vehicles








#### Improving efficiency can save \$billions

Countries could dramatically cut their fuel import bills in the future...

Figure 10.9 Fuel import bills in selected countries by fuel and scenario



Source: IEA World Energy Outlook 2012





# **GFEI Targets**

|             | 2020                                                                | 2030                             | 2050                                                  |
|-------------|---------------------------------------------------------------------|----------------------------------|-------------------------------------------------------|
| New Cars    | 30% reduction* in L/100km compared to 2005                          | 50% average improvement globally | 50% + globally                                        |
|             | Engines, drive- trains, weight, aerodynamics.                       | Hybridisation of most models.    | Significant<br>contributions from<br>Plug-in vehicles |
| Total fleet | 20% reduction                                                       | 35% reduction                    | 50by50                                                |
|             | With lag time for stock turnover; includes eco-driving, maintenance |                                  |                                                       |





## Fuel economy policies – 4 keys

# Fuel economy labeling

- Based on tested fuel economy
- Need to make available to consumers before purchase (internet, car window stickers)

## Fuel pricing

- Taxation system should at least internalize externalities
- CO2 tax will help differentiate fuels as well as encourage fuel economy





## Fuel economy policies – 4 keys

# Fuel Economy Standards

- Typically corporate average standards
- Typically either vehicle mass or size based
- Could be applied to 2<sup>nd</sup> hand vehicles

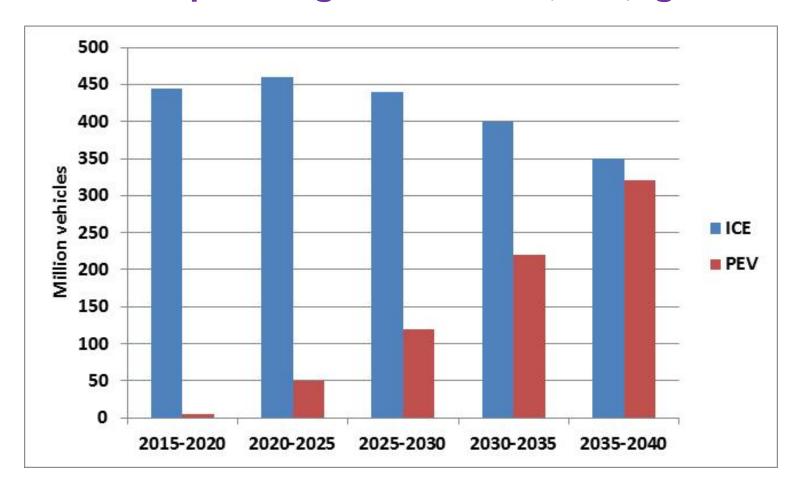
## Vehicle purchase taxes

- Sales tax, registration tax, import duties
- Can be differentiated by fuel economy or CO2 emissions
- Germany also differentiates by pollutant emissions levels





#### What data do we need?


...to develop good policies

- How many vehicles of what types?
  - New v. 2<sup>nd</sup> hand vehicles
  - Information on origins of vehicles
  - Vehicle characteristics (sizes, fuel economy)
  - Make/model details
- National registration databases are very useful





# The next 2-decades will likely be ICE-driven, even with rapid Plug-in Vehicle (PEV) growth



Note: this aligns with the IEA ETP 2012 2DS Scenario except with only 5 million PEV sales by 2020 instead of 20 million.







### **Conclusions**

Reaching the GFEI target to cut by half specific lightduty vehicle fuel consumption by 2030 requires:

- to keep scaling up the market coverage of fuel economy regulations;
- to set strengthened fuel economy improvement targets for the 2015-2030 period (especially in the non-OECD);
- to monitor the stringency of fuel economy improvement targets already in place;
- to keep monitoring the developments of fuel economy worldwide.

### **Thank You!**

# Lew Fulton Imfulton@ucdavis.edu