GEF Support for Sustainable Mobility in Developing Countries

2015 – A Key Year for GFEI and Fuel Economy
27 May 2015; 9 – 10:30am
Leipzig, Germany

Xiaomei Tan, Ph.D.
Climate Change Specialist
Global Environment Facility
Global Distribution of GEF Transport Projects

- GEF support for transport project started in 1997;
- 72 projects in over 110 cities and 55 countries;
- $401 million committed, with $6.1 billion leveraged in co-financing.
GEF Transport Investment Strategy

- Innovative transport technology solutions
- Low-carbon transport systems
- Climate friendly transport sector policies
A Success Story: Global Fuel Economy Initiative

PHASE I - GLOBAL
- 4 PILOTS & TOOLKITS

PHASE II - REGIONAL
- REGIONAL PROJECTS: 15-20 COUNTRIES

PHASE III - NATIONAL
- GLOBAL ROLL OUT: 40+ COUNTRIES
A Success Story: Asian Sustainable Transport and Urban Development Program

GEF Agency: ADB
Resources: GEF Funding: $14.7 million; Co-financing: $988 million
Implementation period: 2012 – 2017 (1st tranche)
Coverage: Bangladesh (Dhaka & Gazipur), China (18 cities), and Mongolia (Ulaanbaatar)
Two channels for Sustainable mobility support under the GEF-6 strategy (2014-2018)

Climate Change Mitigation Focal Area

- *Transit oriented development*
- *Innovative policies and mechanisms for freight and logistics services*
- *Urban sustainable transport infrastructure and systems*

Funding resources: $210 million
Channel two: Sustainable Cities Integrated Approach Pilot

✓ 11 countries; 23 cities
✓ GEF funding: $145 million; Co-financing: $1.44 trillion

- Mexico: La Paz, Campeche, Xalapa
 Co-Financing: $110,000,000
 GEF Funding: $15,000,000

- Senegal: Dakar
 Co-Financing: $51,380,000
 GEF Funding: $9,500,000

- Brazil: Brasilia, Recife
 Co-Financing: $193,000,000
 GEF Funding: $24,673,000

- China: Guiyang, Shenzhen, Ningbo, Nanchang, Beijing, Tianjin, Shijiazhuang
 Co-Financing: $411,000,000
 GEF Funding: $36,000,000

- India: Vijayawada–Guntur, Mysore, Jaipur, Bhopal
 Co-Financing: TBD
 GEF Funding: $13,500,000

- Peru: Lima
 Co-Financing: $133,300,000
 GEF Funding: $7,500,000

- Paraguay: Gran Asuncion
 Co-Financing: $240,340,000
 GEF Funding: $8,250,445

- Vietnam: Hue
 Co-Financing: $175,000,000
 GEF Funding: $9,000,000

- Côte d’Ivoire: Abidjan
 Co-Financing: $21,300,000
 GEF Funding: $5,727,500

- Malaysia: Melaka
 Co-Financing: $18,000,000
 GEF Funding: $3,000,000

- South Africa: Johannesburg
 Co-Financing: $119,927,433
 GEF Funding: $9,000,000
For further information

Please contact us at:

Xiaomei Tan: xtan1@thegef.org

1818 H Street, NW, Mail Stop P4-400
Washington, DC 20433 USA
Tel: (202) 473-7448 Fax: (202) 522-3240/3245
Content

- Introduction to GFEI
 - Methodology
 - Results
 - Conclusions
- Discussion
Global Fuel Economy Initiative

Six core partners: FIA Foundation, UNEP, IEA, ITF, ICCT and UC Davis, financial support from GEF and EU

Scope

- Promoting fuel economy improvements of passenger cars and heavy duty road vehicles

Activities

- Analysis: data gathering, modeling, baseline development
- Evaluation: policy tools and options
- Strategy development: organization of dialogues
- Outreach: Awareness raising, communication
GFEI target

- Reduce new passenger light-duty vehicle specific fuel consumption (Lge/100km) by 50% until 2030
- Reduce passenger light-duty vehicle stock specific fuel consumption (Lge/100km) by 50% until 2050
GFEI fuel economy report

- 3rd edition since 2010
- Unique compilation of OECD and non-OECD new light duty vehicle fuel economy data
- Dataset currently comprises 26 countries covering more than 80% of the global LDV market
- Dataset covering eight years time series from 2008 to 2013
- Next update will come in 2016 and will include data of GFEI pilot countries
Methodology

Analysis based on vehicle registration data from IHS POLK
- Sales data by brand, model, powertrain, fuel, transmission type etc.
- Vehicle segment, weight data and FE/CO₂ data partly missing

Missing information is completed using additional sources – government agencies, car manufacturer associations, journals
- Satisfactory market coverage when CO₂/FE data >80% of total sales

For the updated report, all fuel economy and emission data has been normalized to NEDC
- Normalization based on existing conversion functions from ICCT, JAMA and own analysis
- Improves comparability while only slightly changing the overall message

Fuel economy results are based on sales weighted averages
Regional fuel economy trends

- Countries with FE policies in place show encouraging improvement rates
- Size shift vs. technology evolution moderates non-OECD improvement
- Normalization to NEDC affects FTP based markets most – 15% increase of FE due to conversion compared to last edition
FE improvement - Targets and reality

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2008</th>
<th>2011</th>
<th>2013</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average fuel economy (Lge/100km)</td>
<td>8.6</td>
<td>7.9</td>
<td>7.3</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>annual improvement rate (% per year)</td>
<td>-2.7%</td>
<td>-2.6%</td>
<td>-2.6%</td>
<td>-2.6%</td>
<td>-2.6%</td>
</tr>
<tr>
<td>Non-OECD average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average fuel economy (Lge/100km)</td>
<td>7.3</td>
<td>7.4</td>
<td>7.3</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>annual improvement rate (% per year)</td>
<td>0.5%</td>
<td>-0.4%</td>
<td>-0.9%</td>
<td></td>
<td>-0.2%</td>
</tr>
<tr>
<td>Global average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average fuel economy (Lge/100km)</td>
<td>8.3</td>
<td>7.7</td>
<td>7.3</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>annual improvement rate (% per year)</td>
<td>-2.3%</td>
<td>-1.9%</td>
<td>-1.8%</td>
<td></td>
<td>-2.0%</td>
</tr>
<tr>
<td>GFEI target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average fuel economy (Lge/100km)</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>required annual improvement rate (% per year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005 base year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.7%</td>
</tr>
<tr>
<td>2014 base year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.1%</td>
</tr>
</tbody>
</table>

- **OECD**: rates close to target
- **Non-OECD**: little improvement
- **Global**: Right trend at slow pace
- **2030**: Improve global FE by 50%
FE trends – History and future

- Reaching the GFEI target requires setting of strengthened FE targets for the 2015 to 2030 period and broader coverage of FE regulations.
FE in OECD is very heterogeneous

- Both, least and most efficient markets are in OECD
Vehicle market dynamics

- The non-OECD market accounts for almost 60% of global PLDV sales, leading to a decreasing share of markets with fuel economy regulation.
- Shifts towards least efficient markets lead to moderate average OECD FE improvement rates although more than half of the OECD markets have improvement rates >3%.
Conclusions

Reaching the GFEI target to cut by half specific light-duty vehicle fuel consumption by 2030 requires:

- to keep scaling up the market coverage of fuel economy regulations;
- to set strengthened fuel economy improvement targets for the 2015-2030 period (especially in the non-OECD);
- to monitor the stringency of fuel economy improvement targets already in place;
- to keep monitoring the developments of fuel economy worldwide.
Thank you!
With growing income a shift to larger vehicles can be observed in non-OECD.

Globally a trend towards medium sized vehicles is gaining momentum.
In the OECD and non-OECD a trend towards more powerful cars can be observed, while non-OECD cars are still significantly weaker.

Engine size is stabilizing, while non-OECD vehicles have much smaller engines.
LEW FULTON
UC DAVIS

2015 - A KEY YEAR
FOR GFEI AND
FUEL ECONOMY
The Role of EVs in Saving fuel:

STEPS study on PEV global potentials to 2030

Lew Fulton, Co-Director, Sustainable Transportation Energy Pathways (STEPS), UC Davis

GFEI Session, ITF Leipzig, May 27, 2015

www.steps.ucdavis.edu
Project background

• UC Davis has been funded by FIA Foundation and ITS STEPS Program for this project
• Research team: Lew Fulton, Tom Turrentine, Gil Tal, Aria Berliner
• This project will use market analysis and diffusion theory to develop a new approach to projecting PEV sales around the world, and create a low and high scenario through 2030
• Will work with the IEA to estimate overall energy use/GHG impacts of these PEV scenarios
• Report by Autumn 2015
By 2050 the world will need to shift to selling mainly near-zero emissions vehicles (plug-ins, or PEVs)

Figure 13.18 Global portfolio of technologies for passenger LDVs

Key point: In the Improve case, electric, PHEV and FCEVs together account for nearly three-quarters of new vehicle sales in 2050.

Source: IEA, Energy Technology Perspectives (2012)
There exist many global PEV sales projections – mostly from an earlier time of exuberance...

IEA EV Outlook, 2013

20 million on the road by 2020

World: Electric vehicle production and lithium demand for electric vehicle batteries, 2008 - 2020

(Source: Roskill)
ICE dominance through 2030 even with remarkable PEV sales growth (global LDV sales over 5-year periods)

Source: ETP 2012, adjusted. Note: this aligns with the IEA 2DS Scenario except with only 5 million PEV sales 2015-2020 instead of 20 million.
UC Davis PH&EV Center Analysis: We are very early in a potential PEV transition

- Registered PEVs in the world will reach 1 million this year (Sept?)
 - .1% of 1 billion vehicles

- Annual world market about 300,000 in 2014
 - Should exceed 400,000 for 2015
 - About .5 % of 88 million vehicles per year in 2015

- Sales are concentrated in a few “beachheads” with strong incentives- West Coast US, Northern Europe, Japan & China.
 - California has about 9-10% of world PEVs sales, 2-3% of all vehicle sales

2014 World EV/BEV Sales

- Europe 2014, 100,060, 33%
- USA 2014, 119,701, 39%
- Asia 2014, 85,019, 28%
Top 10 World Sales leaders 1st Qtr 2015

(from EVBlogspot - Ponce)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Type</th>
<th>March</th>
<th>YTD</th>
<th>Availability US</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nissan Leaf</td>
<td>BEV</td>
<td>6,484</td>
<td>13,437</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Tesla S</td>
<td>BEV</td>
<td>6,626</td>
<td>10,030</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Mitsubishi Outlander</td>
<td>PHEV</td>
<td>5,196</td>
<td>9,849</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>BYD Qin</td>
<td>BEV</td>
<td>2,476</td>
<td>6,319</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>BMW i3</td>
<td>BEV & BEV/X</td>
<td>2,012</td>
<td>5,277</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>VW e-Golf</td>
<td>BEV</td>
<td>1,299</td>
<td>3,661</td>
<td>2015</td>
</tr>
<tr>
<td>7</td>
<td>Renault Zoe</td>
<td>BEV</td>
<td>1,349</td>
<td>3,053</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Chevy Volt / Ampera</td>
<td>PHEV</td>
<td>749</td>
<td>2,139</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Toyota Prius Plug in</td>
<td>PHEV</td>
<td>719</td>
<td>2,081</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>VW Golf GTE</td>
<td>PHEV</td>
<td>442</td>
<td>2,003</td>
<td>2016</td>
</tr>
<tr>
<td></td>
<td>Total all models world</td>
<td></td>
<td>42,135</td>
<td>89,599</td>
<td></td>
</tr>
</tbody>
</table>
Five sectors of PEV transition process

1. ZEV & PEV Policy: goals, regulations & incentives
2. Research, development: demonstration & deployment
3. Infrastructure rollout & grid integration
4. PEV rollout & retail sector development
5. Early PEV users

Diffusion processes

Global Vehicle market
Tom Turrentine sees 3 stages of PEV technology roll-out, much like we had for hybrids.
Our research idea...

- Is not to “predict” or “forecast” the sales of PEVs, but explore what factors may matter in determining the trajectory, such as:
 - Consumer awareness, interest in different countries
 - Rate of new model appearance; manufacturer investments in new models/facilities and production ramp-up rates
 - The size and nature of different market segments in different countries, where PEVs are likely to appear, and how this may evolve
 - Diffusion rates of models across countries
 - Policy overlays – the PEV-relevant policies in major markets and their impacts on market development
- We will combine these concepts into a quantitative framework that allows us to project PEV sales to at least 2025, using a scenario approach
The role of market structure

- Plotting out vehicle sales by market segment/RPE to understand the distributions in different markets
- Can overlay PEV models onto this to see where they land
The role of market structure US LDV Sales by segment, 2013

- Millions

C-Lower Medium | D-Medium | D Van | E-Upper Medium | F-luxury | Pick-up | Medium Pick-up | Large Pick-up | Small SUV | SUV | Large SUV | Van/LCV

- Electric /plug-in | Hybrid | Other

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS
The role of market structure US LDV Sales by price, 2013
The role of market structure US Segment C
Consumer behaviour

- Investigate awareness of PEVs in different countries, based on information available. Create an “awareness diffusion curve”, also called legitimation.

- Relate potential demand to:
 - Number/percent of consumers aware of possibility of purchasing plug-ins; percent willing to consider.
 - Number of models available by market segment and the sales of that segment.
 - Price and attribute comparison of these models to average vehicles in this segment.
 - The policy overlay – what incentives exist in this country that promote PEVs, improve awareness, et al.
Manufacturer behaviour

• Snapshot of vehicle makes/models available in different countries today

• Look at sales per model, assume that future introductions occur when sales per model reach a certain level (and taking into account 3-5 year lead time)
 – Models will likely appear first in higher priced segments
 – Manufacturers will gear production toward largest markets and those with best policy/incentive structures

• Use a diffusion concept to model the rate of spread of models and vehicle production/availability across countries
Role of technology

• Consider “3 phases” of PEV introduction with 2015, 2020 being start of phase 2 and 3.
• Battery cost decline – function of cumulative sales
• Higher battery range – the arrival of 300 km EVs.
• More public charging stations, including fast charging or battery swapping
Role of policy

• For each country, estimate the impact of:
 – Vehicle purchase incentives
 – Other incentives (e.g. parking, HOV lanes)
 – Regulatory policies (fuel economy standards, sales restrictions)
 – Support for manufacturing/introduction of models
 – Development of recharging infrastructure
 – Education/awareness campaigns
Putting it together

• These elements will be linked together in an iterative way – the version of this model developed in 2015 will be simplified.

• We will project all LDV sales by market class in each country through 2025, the introduction and sales of new PEV models by class. This will reflect income and total LDV sales growth projections from the IEA.

• We hypothesize that our approach will tend to dampen sales projections, due to limiting factors:
 – Level and spread of awareness, interest in PEVs
 – Limited policy support in many countries
 – Manufacturer limits on investments, rates of new model introduction/roll out, availability by market/class
 – Diffusion rate limits to new markets, new countries
outputs

• Develop low and high scenarios for PEV projections by country, PEV type, through 2025/2030
• Feed this into IEA Mobility Model to generate impacts in terms of electricity use, other energy use, CO2 emissions across transport. Might use this model also to apply diffusion to other countries beyond the major markets we characterize in our main study
• Show the contribution of PEVs through 2025/2030, describe what factors will be most important, how changes in policy could change trajectory
My hypotheses about our coming results

• Is that limits on rate of introduction of new models, rates of production, and consumer awareness will severely slow the projected rate of plug-in adoption
 – Consider that hybrids have been “stuck” at a few percent per year in most countries for nearly 2 decades
• We will explore how policies can be used to speed factors like:
 – Consumer awareness / demand
 – Producer investments / diffusion
• We will try to identify “tipping points” where demand may take off (a la smartphones); this will most likely require widespread awareness, infrastructure, and better/cheaper vehicles
Thank you