UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

State-of-the-World Fuel Economy

Paris, 11 June 2015

Dr. Lewis Fulton, STEPS3 Program, Institute of Transportation Studies University of California, Davis

www.steps.ucdavis.edu

Fuel Economy State of the World 2014

The World is Shifting into Gear on Fuel Economy

	2020	2030	2050
New Cars	30% reduction* in L/100km compared to 2005	50% average improvement globally	50% + globally
	Engines, drive- trains, weight, aerodynamics.	Hybridisation of most models.	Significant contributions from Plug-in vehicles
Total fleet	20% reduction With lag time for stock turnover; includes eco-driving, maintenance	35% reduction	50by50

Typical national objectives related to transportation/fuels policies

- Reduce oil dependence (diversify fuels)
- Improve balance of payments
- Reduce pollutant emissions
- Reduce greenhouse gases
- Promote domestic economies/jobs

IEA WEO 2012: heading toward 2 billion cars

OECD is fairly saturated, but rest of the world is not.:

Figure 3.6 > PLDV fleet in selected regions in the New Policies Scenario

Deep Transport CO₂ Reductions in ETP-2012 2 Degree Scenario (2DS)

 Fuel economy improvement plays largest role, particularly through 2030

Fuel economy context

- Fuel economy improvement can be achieved through
 - Technical changes to vehicles
 - Changing the types of vehicles bought
 - Improving vehicle maintenance
 - Changing the way vehicles are driven (ecodriving)
 - Reducing traffic congestion
- Fuel economy improvement to vehicles should be part of a broader strategy:
 - Traffic management
 - City and regional planning
 - Promotion of public transit
 - Etc.

Meeting GFEI targets can stabilize global light-vehicle CO₂ emissions, despite more than a doubling of vehicle fleet.

Improving efficiency can save \$billions

Countries could dramatically cut their fuel import bills in the future...

Figure 10.9 ▷ Fuel import bills in selected countries by fuel and scenario

Source: IEA World Energy Outlook 2012

GFEI fuel economy report 2015

- 3rd edition since 2010
- Unique compilation of OECD and non-OECD new light duty vehicle fuel economy data
- Dataset currently comprises 26 countries covering more than 80% of the global LDV market
- Dataset covering eight years time series from 2008 to 2013
- Next update will come in 2016 and will include data of GFEI pilot countries

Regional fuel economy trends

- Countries with FE policies in place show encouraging improvement rates
- Size shift vs. technology evolution moderates non-OECD improvement
- Normalization to NEDC affects FTP based markets most 15% increase of FE due to conversion compared to last edition

FE improvement - Targets and reality

		2005	2008	2011	2013	2030
OECD average	average fuel economy (Lge/100km)	8.6	7.9	7.3	6.9	
	annual improvement rate (% per year)	-2.7% -2.6% -2.6% - 2.6 %				
Non- OECD average	average fuel economy (Lge/100km)	7.3	7.4	7.3	7.2	
	annual improvement rate (% per year)	0.5% -0.4% -0.9%				
		-0.2%				
Global average	average fuel economy (Lge/100km)	8.3	7.7	7.3	7.1	
	annual improvement rate (% per year)	-2.3%	6 -1.	9%	-1.8%	
		-2.0%				
GFEI -	average fuel economy (Lge/100km)	8.3				4.2
	required annual 2005 base year improvement rate	-2.7%				
	(% per year) 2014 base year	-3.1%				

OECD: rates close to target

Non-OECD: little improvement

Global: Right trend at slow pace

2030: Improve global FE by 50%

Progress towards 2030 GFEI target

(We're about half way there; next several years are critical)

Sales-weighted averages include projected sales of passenger cars and light commercial vehicles through 2030.

FE in OECD is very heterogeneous

Both, least and most efficient markets are in OECD

Vehicle market dynamics

- The non-OECD market accounts for almost 60% of global PLDV sales, leading to a decreasing share of markets with fuel economy regulation
- Shifts towards least efficient markets lead to moderate average OECD FE improvement rates although more than half of the OECD markets have improvement rates >3%

Potential Fuel Economy Improvements to 2030

From the U.S. NRC 2013 report:

- Light-weighting of up to 25% in 2030, 50% in 2050 relative to 2010
- High efficiency accessories (e.g. air conditioning, lighting, tires)
- High efficiency engines (including but not limited to hybridization)
 - E.g. 25% improvement from turbocharged, downsized direct injection gasoline engines
- Overall Impacts:
 - By 2030, potential for 50% reduction in fuel consumption/CO2 per km at \$2000-3500 per vehicle (through hybridization)
 - 66% reduction by 2050 at somewhat higher cost

Fuel Economy Improvements are Costeffective

Fuel savings more than pays for fuel economy improvements in light-duty vehicles

Source: IEA Fuel Economy Roadmap, July 2012

Passenger Car Fuel Economy Standards Globally

Countries are at various points in developing fuel economy policies

Note: light vehicle fuel economy values normalized or NEDC test cycle

Source: IEA ETP 2015 and ICCT

The IEA's fuel economy readiness index

Countries are at various points in developing fuel economy policies

Source: IEA Fuel Economy Roadmap, July 2012

UNEPs Country engagement picture

UNEPs Mapping of Fuel Economy Policy Progress

The next 2-decades will likely be ICE-driven, even with rapid Plug-in Vehicle (PEV) growth

Note: this aligns with the IEA ETP 2012 2DS Scenario except with only 5 million PEV sales by 2020 instead of 20 million.

Electric vehicles v. gasoline/diesel, with declining power plant CO2 emissions

Battery electric vehicles will probably be needed to get below 50 g/km, but we will also need deeply decarbonized electricity generation

(Based on NRC, 2013 assumptions for fuel economy)

Conclusions

Reaching the GFEI target to cut by half specific lightduty vehicle fuel consumption by 2030 requires:

- to keep scaling up the market coverage of fuel economy regulations;
- to set strengthened fuel economy improvement targets for the 2015-2030 period (especially in the non-OECD);
- to monitor the stringency of fuel economy improvement targets already in place;
- to keep monitoring the developments of fuel economy worldwide.

Thank You!

Lew Fulton Imfulton@ucdavis.edu

